
A statistical approach to evaluating distance metrics
and analog assignments for pollen records

Daniel G. Gavin,a,* W. Wyatt Oswald,b Eugene R. Wahl,c and John W. Williamsd

a Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
b College of Forest Resources, University of Washington, Seattle, WA 98195, USA

c Environmental and Societal Impacts Group, National Center for Atmospheric Research, Boulder, CO 80301, USA
d National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA 93101, USA

Received 14 October 2002

Abstract

The modern analog technique typically uses a distance metric to determine the dissimilarity between fossil and modern biological
assemblages. Despite this quantitative approach, interpretation of distance metrics is usually qualitative and rules for selection of analogs
tend to be ad hoc. We present a statistical tool, the receiver operating characteristic (ROC) curve, which provides a framework for
identifying analogs from distance metrics. If modern assemblages are placed into groups (e.g., biomes), this method can (1) evaluate the
ability of different distance metrics to distinguish among groups, (2) objectively identify thresholds of the distance metric for determining
analogs, and (3) compute a likelihood ratio and a Bayesian probability that a modern group is an analog for an unknown (fossil) assemblage.
Applied to a set of 1689 modern pollen assemblages from eastern North America classified into eight biomes, ROC analysis confirmed that
the squared-chord distance (SCD) outperforms most other distance metrics. The optimal threshold increased when more dissimilar biomes
were compared. The probability of an analog vs no-analog result (a likelihood ratio) increased sharply when SCD decreased below the
optimal threshold, indicating a nonlinear relationship between SCD and the probability of analog. Probabilities of analog computed for a
postglacial pollen record at Tannersville Bog (Pennsylvania, USA) identified transitions between biomes and periods of no analog.
© 2003 Elsevier Science (USA). Published by Elsevier Inc. All rights reserved.
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Introduction

Environmental reconstruction using the modern analog
technique (MAT) is accomplished by matching fossil bio-
logical assemblages to recently deposited (modern) biolog-
ical assemblages for which environmental properties are
known (e.g., Birks and Gordon, 1985). The relatedness of
fossil and modern assemblages is usually measured using a
distance metric that rescales multidimensional species as-
semblages into a single measure of dissimilarity (Guiot,
1990; Overpeck et al., 1985; Prell, 1985; Prentice, 1980).
The distance-metric method is widely used among paleo-
ecologists and paleoceanographers because the method is

intuitive, calculations are straightforward, and it requires no
assumptions of statistical distributions. However, the inter-
pretation of distance metrics remains largely subjective.

There are two major difficulties in interpreting distance
metrics used in the MAT. First, there are no a priori criteria
to determine whether two assemblages are the “same” (an-
alogs) or “different” (no-analogs) based on the distance (i.e.,
dissimilarity) between the samples. Most studies have ap-
plied a threshold value of the distance metric to determine
whether a modern assemblage is an analog. Such thresholds
are often obtained, in the case of pollen analysis, by com-
paring distances between paired modern assemblages within
and between vegetation types to demonstrate distances rep-
resentative of analog or no-analog conditions (Anderson et
al., 1989; Davis, 1995; Overpeck et al., 1985). Selection of
threshold values is scale-dependent, depending on the eco-
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logical resolution of the vegetation classification and num-
ber of variables (taxa) used in computing distances (Calcote,
1998; Sawada et al., 2001). Various methods have also been
used to aid interpretation of modern analogs, such as using
external information to constrain the modern analog selec-
tions and interpreting past climate from a weighted mean of
climate observed at the analog sites (Davis et al., 2000;
Guiot et al., 1993; Pflaumann et al., 1996; Waelbroeck et al.,
1998). Second, the distance metric may not vary linearly
with the actual probability that the fossil and modern sam-
ples are from the same group. If the distance metric could be
transformed to a “probability of analog,” the results of
modern analog studies would be more easily interpretable
(Liu and Lam, 1985; Robertson et al., 1999).

The goal of this paper is to introduce a statistical tool, the
receiver operating characteristic (ROC) curve, to aid the
interpretation of distances between fossil and modern as-
semblages where the modern samples are classified in
groups (e.g., vegetation types). ROC analysis provides a
framework for assessing the accuracy of diagnostic tests
when there are two alternative conditions (e.g., for the
MAT: analog vs no-analog). ROC analysis was developed
in the field of signal detection and is widely used as a
diagnostic tool in medicine to determine the ability of a test
to distinguish diseased and nondiseased cases (reviews in
Henderson, 1993; Metz, 1978; Zweig and Campbell, 1993).
The ROC method has also been used in a wide range of
nonmedical applications, from weather forecasting to lie
detection tests (Swets, 1988). When applied to the MAT, the
ROC method can assess (1) the relative performance of
different distance metrics in distinguishing between analog
and no-analog cases, (2) the decision threshold for identi-
fying analogs, and (3) using Bayesian statistics, the proba-
bility that a modern group is an analog of a fossil assem-
blage. We explored the first two objectives elsewhere using
small data sets (Oswald, in press; Wahl, in press). In this
study, we focus on the third objective, determining the
probability of analog, using 1689 modern pollen assem-
blages from eastern North America and a postglacial pollen
record from Tannersville Bog, Pennsylvania.

ROC analysis

Background

Low values of a distance metric suggest a high proba-
bility that two pollen assemblages are from the same veg-
etation type (i.e., analogs). Thus, the distance metric (d) is
used to distinguish between analog (A�) and no-analog
(A�) cases. ROC analysis is conducted on the distributions
of d for known analog and no-analog cases (Fig. 1a). If the
histograms for analog and no-analog cases have little over-
lap, d is largely effective at discriminating between analog
and no-analog (Fig. 1a). However, such tests are rarely
100% accurate and typically a trade-off exists in the choice

of decision thresholds. For any decision threshold d� there
are a corresponding true positive fraction (in Fig. 1a, the
fraction of actually positive observations less than d�) and
true negative fraction (fraction of actually negative obser-
vations greater than d�). The true positive fraction (TPF,
also referred to as sensitivity) is an estimate of the proba-
bility that the distance metric will be below the correspond-
ing decision threshold given an analog case, Pr(d � d�|A�).
The true negative fraction (TNF, also referred to as speci-
ficity) is an estimate of the probability that the distance
metric will be greater than the threshold given a no-analog
(A�) case, Pr(d � d�|A�). The complement of the TNF is
the false positive fraction (FPF); a false positive is also
known as a type I error. The complement of the TPF is the
false negative fraction (FNF); a false negative is also known
as a type II error.

Selection of an optimal decision threshold requires as-
sessment of the trade-off between maximizing TPF or TNF.
If equal importance is placed on maximizing TPF and TNF
(other weightings could be chosen by the analyst; Zweig
and Campbell, 1993), then an overall index for selecting an
optimum threshold would be TPF � TNF � 1, with a
possible range from 0 (no ability to discriminate at d�) to 1
(perfect discrimination at d�). The optimum d� would be
where this index was a maximum (Wahl, in press; Youden,
1950). Decreasing d� below this optimum would decrease
TPF faster than the increase in TNF, and increasing d�
above this optimum would decrease TNF faster than the
increase in TPF (Fig. 1a).

Over a continuum of decision thresholds, TPF and TNF
vary inversely in a way that depends on the amount of
overlap between the sampled A� and A� populations. A
plot of TPF versus FPF is termed an ROC curve and shows
the continuous range of TPF and FPF for all possible deci-
sion thresholds (Fig. 1b). The area under the ROC curve,
AUC, is a measure of the overall ability of d at discrimi-
nating between A� and A�. If a low d indicates analog
(A�) cases (Fig. 1a), then AUC is equivalent to Pr(dA� �
dA�), where dA� is a randomly selected case from A� and
dA� is a randomly selected case from A�. Because AUC is
not dependent on any particular decision threshold, it is a
global measure of the diagnostic performance of a test
(Metz, 1978). AUC ranges between 0.5 (ROC curve is a
diagonal line; no discrimination by d because the A� and
A� distributions are identical) and 1 (ROC curve follows
the left and upper borders of the ROC graph; perfect dis-
crimination by d because the A� and A� distributions are
completely separated). A wide range of test accuracy can be
demonstrated by the value of AUC (Figs. 1b and 1e).

Confidence intervals for estimates of AUC (AÛC) may
be used to test the hypotheses that d can discriminate cases
better than pure chance (AÛC � 0.5) or whether one test
method is significantly better than another method (AÛC1

� AÛC2). Confidence intervals for AÛC may be computed
by a parametric curve fit to the ROC curve (Metz, 1986), by
the nonparametric standard error of the Wilcoxon rank-sum
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statistic (a statistic equivalent to AÛC; Hanley and McNeil,
1982), or by resampling methods (Mossman, 1995). In this
study we use the Wilcoxon rank-sum statistic because the
distributions of A� and A� frequently appear skewed
(breaking the assumption of the parametric methods) and
resampling methods were excessively complicated to per-
form.

Bayesian inference from ROC curves

In assessing a sample with unknown affiliation, the prob-
abilities described by TPF and FPF are not useful to test
hypotheses, and resorting to a decision threshold fails to
make use of all the information provided by the test result.
A more ideal, threshold-independent, measure is the prob-
ability of an A� result given a certain test result, Pr(A�|d)
(Liu and Lam, 1985). ROC analysis provides a way to
assess this probability using Bayesian methods. This topic
has been concisely reviewed in the medical literature on
ROC curves (Henderson, 1993; Zweig and Campbell,
1993); we present a brief summary below.

The slope of the ROC curve at the portion of the curve
that encompasses d is a function of the frequency of A� and
A� results with similar d. The slope of the ROC curve may
be expressed as Pr(d|A�)/Pr(d|A�), or the ratio of the
probability of obtaining a certain d in the A� population
over the probability of obtaining d in the A� population.
This slope is thus a likelihood ratio of obtaining an A�
result relative to an A� result (Fig. 1c). Note that the value
of d where the likelihood ratio equals 1 (the point on the
ROC curve tangent to a 1:1 line nearest the upper-left
corner) is equivalent to the optimal decision threshold as-
suming equal priority of maximizing TNF and TPF (Fig.
1a). In Bayesian analysis, this likelihood ratio may be com-
bined with a prior (pre-test) probability for a “positive”
result to obtain a posterior (post-test) probability (Hilborn
and Mangel, 1997).

Bayes’ theorem, in its simplest form, allows the calcu-
lation of a conditional probability based on observed simple
probabilities from the population,

Pr(A��d) � [Pr(d|A�) Pr(A�)]/Pr(d) (1)

Fig. 1. Schematic showing the steps of ROC analysis. (a) Frequency distributions of test values from actually positive (black curve) and actually negative
(gray curve) cases. Using an arbitrarily chosen threshold d�, each observation is truly or falsely classified as positive or negative. The proportion of actually
positive cases correctly classified as true is the true positive fraction (TPF). Other fractions shown are the FPF (false positive), TNF (true negative), and FNF
(false negative). (b) The corresponding ROC curve shows the relationship between FPF and TPF over the entire range of possible test values. In this example,
d� is chosen where TPF-FPF is a maximum. AUC is the area under the curve, an index for the overall accuracy of a test. (c) Likelihood ratio of a positive
test result calculated as the slope of the ROC curve over the continuum of test values and posterior probabilities computed from the likelihood ratio and a
prior probability of 0.5. (d)–(f) Frequency distributions, ROC curve, and likelihood ratios for a situation where d is less powerful at discriminating positive
and negative cases.
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where Pr(A�) is the probability of an A� result for the
population as a whole (prior probability) and Pr(d) and
Pr(d|A�) are the probabilities of obtaining a test result d in
the population as a whole or in the A� population, respec-
tively.

A simpler expression of Bayes’ theorem is the odds–
likelihood ratio form,

posterior odds � likelihood ratio � prior odds (2)

where the likelihood ratio in this case is the slope of the
ROC curve at the point of the observed test result (d). Prior
odds, in this sense, is also a likelihood ratio of the proba-
bility of an A� to an A� result, calculated as Pr(A�)/
[1�Pr(A�)]. For example, given a prior probability of 0.05,
prior odds are 0.05/(1 � 0.05) � 0.0526. Given a likelihood
ratio of 25, posterior odds � 1.315. Posterior odds are
converted back to the posterior probability as odds/(1 �
odds), yielding Pr(A�|d) � 0.57.

There are two issues that must be addressed in calculat-
ing posterior probabilities. First, there may be few observa-
tions in the vicinity of the test result d, making the slope
unreliable or incongruous with the ROC curve in general.
To deal with this issue, the likelihood ratio may be based on
the TPF and FPF observations within a window of d that
encompasses a sufficient number of observations. Likeli-
hood ratios also may be computed from a smooth ROC
curve based on a parametric curve fit to the observed TPF
and FPF values (Metz, 1986). Second, as with many appli-
cations of Bayesian statistics, the choice of prior probabil-
ities is difficult and may bear heavily on the posterior
probability (Hilborn and Mangle, 1997). Priors may be
based on no assumed prior knowledge, on the prevailing
knowledge before the study was conducted, or on previous
results from the same study.

Application of ROC analysis to the modern analog
technique

Rationale

To assess whether two pollen assemblages are from the
same vegetation, the distance between the two pollen as-
semblages (palynological, not geographical, distances com-
puted using a distance metric) may be analyzed using ROC
analysis. We assume that distances between modern assem-
blages within vegetation types describe analog situations
and the distances between assemblages in different vegeta-
tion types describe no-analog situations (Anderson et al.,
1989; Davis, 1995; Wahl, in press). We propose a specific
framework for computing the distances within and among
vegetation types. Assume a modern pollen assemblage data
set representing only two vegetation types (a and b), where
type a is to be assessed as an analog based on the distance
from fossil pollen assemblages to the nearest analog in type
a. Calibration of the distance metric is then based on near-

est-neighbor distances within type a for the “positive” cases
(i.e., distances from each pollen assemblage in type a to the
most similar assemblage in type a) and nearest-neighbor
distances from pollen assemblages in type b to type a for the
“negative” cases (Fig. 2a). Distances are similarly calcu-
lated to calibrate the distance metric for type b (Fig. 2d).
Note that this approach to calibrating distance metrics uses
smaller distances for the distribution of actually positive and
actually negative cases compared to using all pairwise com-
parisons. This approach should be more appropriate than
using all pairwise comparisons if application of the modern
analog technique uses only the nearest analog from fossil
assemblages (Overpeck et al., 1985). Also note that the
nearest-neighbor distances are not symmetric (Figs. 2b vs
2e), so the ROC curves differ depending on which group is
being assessed as the analog (Figs. 2c vs 2f).

Methods

We applied ROC analysis to modern pollen assemblages
from eastern North America (Fig. 3). Data were compiled
from holdings at the global pollen database (http://www.
ngdc.noaa.gov/paleo/gpd.html) and Brown University. Sites
were classified into one of ten vegetation types derived from
the IGBP DISCover land cover classification (Loveland et
al., 2000) based on the modal land cover type in a 20 � 20
km square around each site (Williams and Jackson, 2003).
We did not use sites classified as cropland, cropland/natural
vegetation mosaics, or pasture, eliminating much of the
agricultural area of the Midwest and southern Piedmont,
leaving 1689 samples in eight biomes (Fig. 3). Dissimilarity
values were calculated from 25 pollen types common in
eastern North America (Table 1; Williams et al., 2001). All
analyses could be run using spreadsheets and public-domain
software for analog analysis (ANALOG, Schweitzer, 1999)
and ROC curve analysis (ROCKIT, Metz, 1998).

To examine how well different distance metrics perform
at distinguishing biomes, we examined ROC curves based
on nine distance metrics (Prentice, 1980; Overpeck et al.,
1985) (Table 2). These distance metrics represent three
classes regarding how much weight is applied to rare pollen
types. Equal-weight metrics (Canberra, Gower’s, and stan-
dardized Euclidean) standardize the pollen types so that
each affects the distance value equally. Unweighted metrics
(Manhattan, squared cosine-�, and Euclidean) do not scale
pollen abundance in any way. Signal-to-noise metrics
(squared chord, information index, and squared �2) moder-
ately increase the contribution of rare pollen types (Prentice,
1980). To evaluate the different metrics, we compared two
particularly well-represented biomes (Deciduous Broadleaf
Forest and Southern Evergreen/Mixed Forest) by using only
nearest-neighbor distances within the Deciduous Broadleaf
Forest and from the Southern Evergreen/Mixed Forest to the
Deciduous Broadleaf Forest, following the strategy depicted
in Fig. 2. For each distance metric, we constructed ROC
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curves and computed the AÛC and its 95% confidence
interval.

We chose the squared-chord distance (SCD) metric for
more detailed analyses among all eight biomes because it
performed well in the present analysis and has been iden-
tified in previous work as the best general metric for the
MAT (Overpeck et al., 1985). We computed ROC curves
for all 56 possible pairwise comparisons of biomes. For
each biome, the relative frequencies of distances from the
seven other biomes were averaged into a single histogram,
which weights each biome equally irrespective of sample
size. The likelihood ratios calculated from this average
histogram represent, for a particular distance, the ratio of the
probability that a fossil assemblage is from that biome vs.
the probability it is from one of the seven other biomes. This
likelihood ratio can then be used in conjunction with the
prior probability to calculate a probability of analog for that
biome (Eq. (2)).

We then used the likelihood ratio estimates for each
biome to compute posterior probabilities of analog for fossil
pollen assemblages from a detailed and well-dated pollen

record currently in the Deciduous Broadleaf Forest but close
to the transition to the Southern Evergreen/Mixed Forest
biome (Tannnersville Bog, PA; Watts, 1979). The nearest
analog from each fossil sample to each biome was deter-
mined using the SCD. We then computed posterior proba-
bilities of analog for each fossil sample to each biome using
the biome-specific likelihood ratios and prior probabilities
fixed at 0.125 (1/# of biomes) following eq. (2). The pos-
terior probabilities for each biome are for tests of hypothe-
ses that a fossil assemblage is more likely an analog to that
biome than to the other seven biomes. Thus, posterior prob-
abilities do not necessarily sum to 1 over the eight biomes
and may reflect the occurrence of no-analog vegetation
types.

Our ability to discriminate among biomes that are poten-
tial analogs may be weakened by the inclusion of biomes
with very low probability of analog. To better analyze the
Tannersville Bog pollen record, we computed a second
probability of analog using only biomes that in the first
analysis (using eight biomes) had a probability of analog
�0.05. In this second analysis, the pollen record was broken

Fig. 2. Schematic showing how ROC analysis may be applied to the modern analog technique using modern pollen assemblages grouped into vegetation
types. (a) Assemblages are shown with only two taxa for ease of presentation. Distances from assemblages to nearest neighbors in the same type (squares)
represent distances typical of an analog situation (black arrows). Distances from assemblages in an alternative type (circles) to the nearest neighbor represent
distances typical of no-analog situation (gray arrows). (b) Histograms of the two samples of distances (black codes for the analog situation, gray for the
no-analog situation). (c) ROC curve based on the values in (b). The stair-step form of the ROC curve results from the relative ranking of distances representing
analog and no-analog cases. Graphs (d) through (e) show the same methods applied to calibrating the distance metric for the other vegetation type (circles).
Note that different within-vegetation type variance and the juxtaposition of assemblages in different vegetation types yield different ROC curves depending
on which type is being assessed for analogs.
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into five time periods, each with two to six biomes that were
potential analogs. Likelihood ratios were recalculated using
only the subset of biomes for each time period and new
probabilities of analog were calculated using a prior prob-
ability of 1/# of biomes.

Results

All metrics can distinguish between the Deciduous
Broad-leaf Forest and the Southern Evergreen/Mixed Forest
biomes better than chance alone (AUC � 0.5; Fig. 4). The
three signal-to-noise metrics (squared chord, squared �2,
and information) and one unweighted metric (Euclidean)
result in the best discrimination of the two biomes (AÛC �
ca. 0.78). These metrics perform significantly better than
two equal-weight metrics (Canberra and Gower’s, AÛC �
0.641 and 0.621, respectively) and one unweighted metric

(squared cos-�, AÛC � 0.631). The standardized Euclidean
(AÛC � 0.690) and Manhattan (AÛC � 0.735) metrics
perform worse, though not at a statistically significant level,
than the signal-to-noise metrics.

Overall, pollen assemblages from the deciduous broad-
leaf forest are distinct from those from the seven other
biomes when each biome is weighted equally (AÛC �
0.914, using the SCD metric; Fig. 5). Separation of modern
pollen assemblages among biomes increases with increasing
geographic distance. There is nearly complete separation
between pollen assemblages from the Tundra–Barren and
Deciduous Broadleaf Forest biomes (AÛC � 0.994),
whereas pollen assemblages from the Cool Mixed Forest
and Deciduous Broadleaf Forest biomes overlap strongly
(AÛC � 0.732). The optimal decision threshold (maximum
TPF-FPF) also increases with increasing geographic dis-
tance between biomes, with values of 0.07 for adjacent
biomes and as high as 0.15 for very dissimilar biomes.

The decision thresholds of the SCD vary substantially
among biomes when each biome is compared to all other
biomes combined (Fig. 6). Some biomes are tightly defined
palynologically, as demonstrated by low within-biome dis-
tances and low decision thresholds (e.g., 0.06 for Forest–
Tundra), while some biomes have more diverse pollen as-
semblages and high decision thresholds (e.g., 0.14 for
Southern Evergreen/Mixed Forest). Despite this range in
decision thresholds, many biomes were equally distinct
from other biomes (AÛC � ca. 0.90), implying approxi-
mately equal power for SCD to distinguish among biomes.
For all biomes, the likelihood ratio for the probability of
analog vs no-analog decreases nonlinearly with increasing
SCD (Fig. 6b). Likelihood ratios are more sensitive to SCD
below the optimal decision threshold (LR � 1) than above
it (LR � 1). However, each biome differs in the magnitude
of the likelihood ratio at small SCD. Likelihood ratios are
more easily interpreted when translated into posterior prob-
abilities. The relationship between SCD and posterior prob-
ability of analog also is nonlinear, with much greater sen-
sitivity to small changes at low SCD vs high SCD (Fig. 7).

Table 1
Pollen types used in the distance metric calculations

Abies Ostrya/Carpinus
Acer Picea
Alnus Pinus
Betula Platanus
Carya Poaceae
Corylus Populus
Cupressaceae/Taxaceae Prairie Forbs*
Cyperaceae Quercus
Fagus Salix
Fraxinus Tilia
Juglans Tsuga
Larix Ulmus
Liquidambar

* Prairie Forbs � sum of Chenopodiaceae/Amaranthaceae and Aster-
aceae (excluding Ambrosia).

Fig. 3. Locations of 1689 modern pollen assemblages from eastern North
America and the land cover classification (1-km resolution) modified the
DISCover IGBP biome type (Loveland et al., 2000). Barren-Tundra, For-
est-Tundra, and Grasslands and Shrublands represent several merged bi-
ome types. Mixed forest is split among three latitudinal zones (Northern,
cool, and Southern), Evergreen Forest is split between two latitudinal zones
(Northern and Southern), and the Southern Mixed and Evergreen Forest
types are merged. The starred site is Tannersville Bog.
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As expected, the relationship between SCD and posterior
probability depends strongly on the prior probability (Fig. 7;
Eq. (2)).

The pollen record from the Tannersville Bog shows a
fluctuating probability of analog over the past �16,000
years (Fig. 8). The initial analysis of all eight biomes using
a constant prior probability of 0.125 resulted in a time series
of fairly low probabilities of analog (rarely �0.2). However,
the analysis based on subsets of the most likely biomes
resulted in higher probabilities (often �0.4) and time series
that appeared more sensitive to changes in the pollen record.
The difference between the two analyses is likely due to a
combination of higher prior probabilities and more sensitive
relationships between SCD and LR (not shown) when using
subsets of potential analog biomes. We focus below only on
the results based on the analysis of subsets of biomes.

Prior to 16,000 cal yr B.P., the lowest SCD values (ca.
0.1) are to the Northern evergreen forest, resulting in a
moderate probability of analog (ca. 0.2). SCD values de-
crease sharply, and probability of analog increases, for
Northern Evergreen Forest at a peak in Picea pollen at
16,000 cal yr B.P. Between ca. 16,000 and 13,500 cal yr
B.P., cool mixed forest has the greatest probability of analog
(ca. 0.2). A period of very low probability of analog for all
biomes occurs between 13,500 and 12,500 cal yr B.P. At
12,500 cal yr B.P., concurrent with an increase in Pinus
pollen and decrease in Betula, Picea, and Alnus pollen, SCD
decreases to �0.1 and probability of analog increases to ca.
0.25 for three biomes (Cool Mixed Forest, Deciduous

Broadleaf Forest, and Southern Evergreen/Mixed Forest).
At 10,000 cal yr B.P. SCD to Cool Mixed Forest increases
to 0.2 and the corresponding probability of analog decreases
to �0.05, shortly followed by a similar decrease in proba-
bility of analog to Southern Evergreen/Mixed Forest. This
period of low probability of analog continues until an in-
crease in Carya pollen at ca. 6000 cal yr B.P. when prob-
abilities increase to ca. 0.45 for Deciduous Broadleaf Forest.
During a period with low Tsuga pollen (5000 to 3500 cal yr
B.P.) Southern Evergreen/Mixed Forest has a slightly
greater probability of analog than Deciduous Broadleaf For-
est. For the remainder of the record both Deciduous Broa-
dleaf Forest and Southern Evergreen/Mixed Forest have
SCD values of ca. 0.10–0.15 and higher probabilities of
analog (0.4–0.5). The probability of analog to the Decidu-
ous Broadleaf Forest increases to 1.0 for the uppermost
sample (which was part of the modern data set).

Discussion

ROC analysis provides a formal means of assessing
previously ambiguous steps of the MAT. It can be used to
compare the performance of different distance metrics, eval-
uate the tradeoffs of using different decision thresholds, and
to compute posterior probabilities of analog for fossil as-
semblages. We discuss the effectiveness of the ROC method
when applied to modern pollen assemblages from eastern
North America.

Table 2
Nine distance metrics for determining dissimilarity between two pollen assemblages (from Prentice, 1980; Overpeck et al., 1985)

Distance metric Formula

Equal-weight metrics Canberra distance
dij � �k

�pik � pjk�
pik � pjk

Standardized Euclidean distance
dij � ��k

�pik � pjk	
2

sk

Gower’s distance
dij � �2�k

�pik � pjk�
Rk

Unweighted metrics Manhattan distance dij � �k�pik � pjk�

Euclidean distance dij � ��k�pik � pjk	
2

Squared cos-� distance
dij � �k� pik

��kpik
2

�
pjk

��kpjk
2� 2

Signal-to-noise metrics Squared-chord distance dij � �k��pik � �pjk	
2

Squared �2 distance
dij � �k

�pij � pjk	
2

pik � pjk

Information statistic
dij � �k�pikln

2pik

pik � pjk
� pjkln

2pjk

pik � pjk
�

Note. pik � the proportion of pollen type k in sample i, Rk � the range of proportions for pollen type k over all samples, and sk � the standard deviation
of proportions of pollen type k over all samples.
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Fig. 4. Accuracy of nine different distance metrics at distinguishing be-
tween pollen assemblages from Deciduous Broadleaf and Southern Ever--

green/Mixed Forest. (a) Histograms of the nearest-neighbor distances be-
tween pollen assemblages within Deciduous Broadleaf Forest (solid bars)
and the nearest-neighbor distances from each pollen assemblage in the
Southern evergreen/mixed forest to pollen assemblages in the deciduous
broadleaf forest (gray line). Relative frequencies are used to account for
unequal sample sizes in different biomes. All within-biome comparisons
are shown, but a large proportion of between-biome comparisons (gray
line) occur beyond the range shown. (b) ROC curves for each set of
histograms, with AÛC and its 95% confidence interval determined using
the Wilcoxon rank-sum statistic shown in the lower right corner.

Fig. 5. Accuracy of the squared-chord distance (SCD) at distinguishing
Deciduous Broadleaf Forest pollen assemblages from pollen assemblages
in seven other biomes. (a) Histograms of the nearest-neighbor distances
between pollen assemblages within the deciduous broadleaf forest (solid
bars) and the nearest-neighbor distances from each pollen assemblage in
each of the seven other biomes to pollen assemblages in the Deciduous
Broadleaf Forest (gray line). Relative frequencies are used to account for
unequal sample sizes in different biomes. Arrows indicate the optimal
decision threshold for SCD (jointly maximizing the true positive and true
negative fractions). The average of the histograms from each of the seven
biomes is shown in the bottom panel. (b) ROC curves for each comparison.
AÛC and its 95% confidence interval determined using the Wilcoxon
rank-sum statistic is shown in the lower right corner.
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Statistical comparison of distance metrics

Some distance metrics have greater power to discrimi-
nate among vegetation types than others. Although our
ranking of distance metrics agrees with a previous study
using a similar data set (Overpeck et al., 1985), it is now
possible to attach levels of significance to these findings and
assess data sets where other distance metrics are more
appropriate. For example, Oswald (in press) used ROC
analysis to show that an equal-weight metric (Canberra) was
better than the SCD for discriminating between pollen as-
semblages from contrasting arctic tundra communities
where the vegetation types differed only in terms of rare
taxa.

Decision thresholds for assessing modern analogs

Our analysis of modern pollen assemblages from eastern
North American biomes show that decision thresholds for
the SCD vary at different spatial scales and among biomes.
The biome-by-biome comparison (Fig. 5) shows that thresh-
olds are scale-dependent; i.e., thresholds decreased from
0.15 to 0.07 when increasingly similar biomes were con-

trasted. Studies that compare vegetation types at finer res-
olution would require smaller decision thresholds (e.g., 0.05
for forest stand types; Calcote, 1998). The accuracy of the
distance metric (as measured by AUC) also decreases when
biomes are more similar, so that the decision threshold and
accuracy tend to be positively correlated (Fig. 5). In addi-
tion, the overall decision threshold (each biome compared
to the average of the other biomes) varies among biomes
(Fig. 6). These differences are attributable to differences in
within-biome variation of pollen assemblages as well as the
separation of pollen assemblages among biomes.

We identified lower optimal decision thresholds (maxi-
mum TPF-FPF) for most biomes (ca. 0.08; Fig. 6) than
reported by Overpeck et al. (1985) (0.15) using a similar
data set. This discrepancy is due to our calibration of the
SCD using the nearest neighbor distances within and be-
tween biomes because analyses of the fossil records are
often based only on distance to the nearest modern analog.
In contrast, Overpeck et al. (1985) used essentially all
paired comparisons among modern assemblages. Including
more than just nearest-neighbor comparisons increases the
variance in the distributions used in the ROC analysis, and
thus increases the decision threshold. In addition, Overpeck

Fig. 6. Accuracy of the squared-chord distance (SCD) at distinguishing pollen assemblages from each of eight North American biomes from pollen
assemblages in every other biome. (a) Histograms of the nearest-neighbor distances between pollen assemblages within each biome (solid bars) and the
average of the histograms of nearest-neighbor distances between pollen assemblages from the seven other biomes to that biome (gray line; see Fig. 5). (b)
Likelihood ratio for an analog vs no-analog result computed as the ratio of relative frequencies of within and between-biome comparisons over a range of
SCD values. Values for a and b are parameters of the fitted curve: LR � a*(SCDb). Arrows in part (a) indicate the optimal threshold for SCD (jointly
maximizing the true positive and true negative fractions), which roughly corresponds to the point in part (b) where LR � 1.
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et al. (1985) used visual observation of distances to deter-
mine the value of decision thresholds, which does not allow
rigorous examination of how threshold values interact with
the false positive and false negative fractions.

The loss in vegetation discrimination can be asymmetric
above and below the optimal threshold that maximizes the
difference between TPF and FPF. Initial work on this issue
identified a more rapid loss in discrimination at thresholds
below the optimal d� than above the optimal d� when the
variance of the actually positive distribution is less than the
variance of the actually negative distribution (Wahl, in
press). This situation is consistently noted in modern pollen
surface sample sets from which similar distributions are
reported (Anderson et al., 1989; Davis, 1995; Wahl, in
press) and is true for the data used in this analysis (Figs. 5
and 6). This asymmetry results in a faster increase in false
negatives when decreasing the threshold below the optimal
d� relative to the corresponding increase in false positives
when increasing the threshold above the optimal d�. ROC-
based analysis offers a way to explicitly examine the effects
of this asymmetry and thus make rigorous choices concern-
ing the tradeoffs involved when choosing a threshold other
than the optimal d�: increasing false negatives (sacrificing

sensitivity) and decreasing false positives (boosting speci-
ficity) when d� is set below the optimum; and decreasing
false negatives (boosting sensitivity) and increasing false
positives (sacrificing specificity) when d� is set above the
optimum.

Likelihood ratios and the probability of analog

The North American pollen data demonstrated a highly
nonlinear relationship between the likelihood ratio (proba-
bility of analog vs no-analog) and the distance metric (Fig.
6). Minor changes in the SCD have a greater effect on the
probability of analog at low than at high SCD values. In
fact, the relationship between the SCD and posterior prob-
ability for a given prior probability shows posterior proba-
bilities are a power function (steeper-than-exponential) of
the SCD (Fig. 7). Using likelihood ratios in a Bayesian
analysis, therefore, is a means to transform the SCD values
into an interpretable probability of analog that accommo-
dates the nonlinear relationship between SCDs and posterior
probabilities. This Bayesian approach to environmental re-
construction has already been advocated for different appli-
cations (Robertson et al., 1999; Toivonen et al., 2001).

Our use of Bayesian analysis with the MAT applied to
the Tannersville Bog pollen record highlights several im-
portant considerations (Fig. 8). The initial analysis of the
pollen record, using all eight biomes and low prior proba-
bility of 0.125, showed only minor changes in the proba-
bility of analog for several biomes despite major changes in
pollen assemblages. The constant low prior probability used
in this analysis effectively muted the response of the prob-
ability of analog to changes in SCD. Our approach to this
problem was to limit the number of potential biomes in the
analysis, allowing the use of higher prior probabilities. Lim-
iting the number of biomes in the analysis resulted in a
probability of analog that was more sensitive to changes in
the pollen record (compare dashed and solid lines in Fig. 8).
Another approach would be to set priors based on the
posteriors of the preceding sample. However, this approach
would cause the posterior probability (probability of analog)
to decrease asymptotically to 0 if the likelihood ratio is
consistently less than 1, or increase asymptotically to 1 if
the likelihood ratio is consistently greater than 1. Very small
or large prior probabilities would prevent any rapid changes
in vegetation from registering as rapid changes in the prob-
ability of analog. Our decision to use equal and constant
prior probabilities was chosen to make the time series of
probability of analog easier to interpret.

Decisions and tradeoffs inherent to the MAT and ROC
analysis

The nearest-neighbor framework for constructing ROC
curves (Fig. 2) is very flexible but also may be overly
affected by single outlier samples. A modern assemblage
that falls very near a different group, or is misclassified,

Fig. 7. Relationship between squared-chord distance (SCD) and posterior
probability of analog, computed using the likelihood ratios from Fig. 6 and
a range of prior probabilities: 0.125 (solid line), 0.25 (dashed line), and 0.5
(dotted line).
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could have a large effect on the resulting ROC curve,
especially with small sample sizes. Outliers could be as-
sessed using multivariate techniques such as principal com-
ponent analysis. The effect of outliers could also be mini-
mized by averaging distances from each modern sample to
the nearest 3–10 neighbors rather than the nearest single
neighbor, thus decreasing the effect of the largest outliers.
Using this approach in the current analysis, we found no
significant differences between ROC curves constructed
from the average of the nearest three neighbors and the
nearest single neighbor, suggesting little influence of single
outliers in this large data set.

A second difficulty of ROC analysis is that it requires
modern samples be classified into groups. This approach is
also necessary for other methods of environmental recon-
struction, including biomization (Prentice et al., 1996) and
linear discriminant analysis (Liu and Lam, 1985). There will
naturally be ambiguities in classifying modern communities

into discrete groups, such as the eight biomes used in this
study (Fig. 3). However, this prerequisite should not affect
analysis of fossil records with substantial periods that are
transitional between biomes. Such periods may be repre-
sented by simultaneous moderate probabilities of analog to
both biomes, assuming that the two biomes are sufficiently
palynologically distinct (e.g., the late Holocene in Fig. 8).

Conclusions

ROC analysis resolves previously ambiguous steps of the
modern analog technique: the choice of decision thresholds,
the discriminating power of various distance metrics, and a
formalized assessment of the probability that a pollen as-
semblage is from any given biome. ROC analysis requires
no parametric assumptions. Applied to modern pollen as-
semblages from eastern North America, ROC analysis is

Fig. 8. Selected pollen types and analog results from Tannersville Bog, PA (Watts, 1979). Squared-chord distances (SCD) to the nearest modern assemblages
in each of seven biomes are shown, where SCD � 0.3. Bayesian posterior probability of analog of fossil pollen assemblages was calculated using the
relationship between likelihood ratios and the SCD to the nearest modern analog in each biome. Solid lines show the initial analysis using all eight biomes
(Fig. 6) and a constant prior probability of 0.125. Dashed lines show a second analysis including only biomes in the shaded portions and using higher prior
probabilities (1/# of biomes). All posterior probabilities for the Grassland biome (not presented) were �0.001. The chronology is based on linear interpolation
between calibrated radiocarbon dates (Stuiver et al., 1998).
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successful at identifying the SCD as an appropriate distance
metric, at determining appropriate thresholds for the SCD,
and at estimating the (Bayesian) probability of analog of
fossil assemblages to major biomes. Future refinements to
the ROC method applied to the MAT include (1) computing
confidence intervals for likelihood ratios to more critically
evaluate the probability of analog, (2) applying the method
to finer-scale ecological classifications, and (3) explicit
comparisons of the method with other quantitative methods
of classifying fossil pollen assemblages.
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